Lecture on Measures of Dispersion

By:

Dr. Gunjan Patil Assistant Professor Department of Forestry, Wildlife and Environmental Sciences Guru Ghasidas Vishwavidyalaya Bilaspur-495009, INDIA

MEASURES OF DISPERSION

The scatterness or variation of observations from their average is called the dispersion There are different measures of dispersion like Range **Quartile Deviation** Mean Deviation Standard Deviation

The simplest measure of dispersion is the range

The range is the difference between the minimum and maximum values in a group of observations

Example- Yield of eucalyptus from different plot is as follows (tonne/plot) =

 10
 12
 6
 19
 20
 25
 22
 29
 5
 11

Range coefficient

Range coefficient=
$$\frac{X_{max} - X_{min}}{X_{max} + X_{min}}$$

Range coefficient =
$$29-5/29+5$$

= $24/34$
=0.70

Merits, Demerits and Use of Range

MERITS

- Simple
- Easy to understand
- Quickly calculated

DEMERITS

- Its value fluctuate with size of observation
- It is unstable in repeated sampling
- It is very rough measures of dispersion and not suitable for precise and accurate studies
- **USE:** Its often used in certain industrial work

Quartile Deviation

The quartiles are the values which divide the whole distribution into four equal parts

• We can delete the values below the first quartile and the values above the third quartile

$$Q.D.=(Q_3-Q_1)/2$$

This quantity known as quartile deviation

Merits and Demerits of QD

MERITS

The quartile deviation is more stable than range

This is not affected by two extreme value

DEMERITS

✤ It fails to take the values of all deviations

Mean Deviation

- It is the deviation of each observation from the mean value of the same series is known as mean deviation
- To avoid zero value from the sum, here considering absolute value for calculating dispersion
- $X = \Sigma \overline{X}/N$
- Mean Deviation = 1/N $\left| \Sigma X \overline{X} \right|$

Formula for frequency distribution

• Mean Deviation = $1/N |\Sigma f(X-\overline{X})|$

Classes	Frequency	Mid	fX	$X-\overline{X}$	$f(X-\overline{X})$	$\left f(X-\overline{X}) \right $
		Values				
0-10	1	5	5	-22	-22	22
10-20	3	15	45	-12	-36	36
20-30	5	25	125	-2	-10	10
30-40	4	35	140	8	32	32
40-50	2	45	90	18	36	36
Total	15		405			136

Calculation

X = 405/15 = 25

```
Mean deviation= 1/N |\Sigma f(X-\overline{X})|
=1/15*136
=9.07
```

Merits:

- The mean deviation takes all the values into consideration
- It is fairly stable compared to range or quartile deviation

Demerits:

- It is not stable like standard deviation
- Mean deviation ignores signs of deviation
- It is not possible to use it for further statistical analysis

Standard Deviation

✓ The standard deviation is defined as the square root of the mean of the squared deviations of individual values around their mean.

$$\checkmark$$
 SD= $\sqrt{\frac{\Sigma(X-X)}{N}^2}$

 \checkmark SD for grouped data=

$$\frac{\Sigma f(X-X)^2}{N}$$

Calculation

Observation	$X-\overline{X}$	$(X-\overline{X})^2$
5	-2	4
6	-1	1
7	0	0
7	0	0
8	1	1
9	2	4
Total= 42		10

N=6

X = 42/6 = 7SD= $\sqrt{\frac{\Sigma(X-X)}{N}^2}$

Continue

$$SD = \sqrt{\frac{10}{6}}$$
$$SD = 1.29$$

Coefficient of SD= SD/Mean

Coefficient of SD=0.184

Variance= (SD)²

Variance=1.66

Coefficient of Variance (CV) = SD/Mean*100

CV = 1.29/7*100

CV = 18.4

CHARACTERISTICS

- It is rigidly defined
- Its computation is based on all the observation
- If the all variate values are the same SD=0
- SD least affected by fluctuations of sampling

<u>USES</u>

- It is used in computing different statistical quantities like regression coefficients, correlation coefficient
- It is also used in testing the reliability of certain statistical measures